MECH 498 – Hybrid Rocket Modeling and Design Optimization

Benjamin Klammer V00829094 Supervisor: Dr. Henning Struchtrup

Introduction

- Developed numerical model of hybrid rocket implemented in MATLAB
- Performed design optimization using built-in MATLAB functions
- Conducted global sensitivity analysis

UVic Rocketry (UVR)

- Student-led extracurricular engineering team
- Developing paraffin-N₂O hybrid rocket
 - Currently obtaining approval for testing of half-scale motor
- Launching hybrid rocket (Ramses-1) at Spaceport America Cup in June 2020
 - Competition goal is to reach as close to 10,000ft AGL as possible

Hybrid Rockets

- Liquid oxidizer, solid fuel
- Simpler than liquid, higher performance than solid
- Safe, environmentally friendly
- Historically underdeveloped

Problem Definition

Need:

- UVR requires a conceptual design of a flight motor in order to begin detailed design Goal:
- Develop a numerical model of a hybrid rocket and perform design optimization and sensitivity analysis to select an optimal design

Literature Review

- Stanford/NASA Ames
 - Discovered liquefying fuels, averaged regression rates [2] [3]
 - Nitrous oxide injection and pressurization [4] [5]
- Several other modeling efforts, CFD [6][7][8][37]
- Genetic algorithm commonly used in conceptual design [10][11]
- Uncertainty-based design optimization of hybrid rocket [12]

[17]

Modeling – Overview

Model requirements:

- Sufficiently accurate
- Minimum of inputs
- Computationally inexpensive

Modeling – Oxidizer Tank

- Initially two-phase saturated fluid (liquid and vapour) in thermal equilibrium
- Two differential equations (mass and energy)
- Mass flow (out) determined by injector model
- Enthalpy determined from saturation properties
- Iteratively solve tank temperature from volume constraints

Mass Balance:

Energy Balance:

$$\frac{dm_{tank}}{dt} = \dot{m}_{ox}$$

 $\frac{dU_{tank}}{dU_{tank}} = \dot{m} - h$

$$\frac{dU_{tank}}{dt} = \dot{m}_{ox}h_{outlet}$$

Vapour Mass Fraction:

Tank Volume Constraint:

$$x_{tank} = \frac{U_{tank}/m_{tank} - u_{liq}}{u_{vap} - u_{liq}} \qquad \qquad V_{tank} = m_{tank} \left(\frac{1 - x_{tank}}{\rho_{liq}} + \frac{x_{tank}}{\rho_{vap}}\right)$$

Modeling – Injector

- Boundary between feed system and combustion chamber
 - Crucial for combustion efficiency and stability
- Single phase incompressible model used for mass flow
- Empirical term captures model simplifications

Oxidizer Mass Flow:

$$\dot{m}_{ox} = C_d A_{inj} \sqrt{2\rho_1 (p_{tank} - p_{cc} - p_{feed})}$$

Injector

Modeling – Combustion Chamber

Combustion Chamber Functions

- Houses fuel grain and igniter
- Location of combustion
- Downstream of injector, upstream of nozzle

Modeling Assumptions

- Working fluid is homogenous ideal gas
- Flow is steady in chamber
- Properties are constant in chamber
- Combustion happens instantaneously
- Combustion is complete

Modeling – Mass Flow

- Fuel mass flow determined by
 - Mass flux through port
 - Fuel and oxidizer combination
- Ideal nozzle with correction used to determine pressure

Oxidizer to Fuel Ratio:

$$O/F = \frac{\dot{m}_{ox}}{\dot{m}_f}$$

Fuel Mass Flow:

$$\dot{m}_f = 2\rho_f \pi r L(aG^n)$$

Stagnation Pressure:

$$P_0 = \frac{\dot{m}_{cc}}{\zeta_d A_{th}} \sqrt{\frac{T_0 R}{k} \left(\frac{k+1}{2}\right)^{\frac{k+1}{k-1}}}$$

Chamber pressure:

$$P_{cc} = P_0 \left(\frac{T_{cc}}{T_0}\right)^{\frac{k}{k-1}}$$

Chemical Equilibrium with Applications

- CEA is a thermodynamic code written by NASA
- Calculates thermodynamic properties of combustion
- Allows for changes in oxidizer-fuel combination
- Lookup table created as function of $\rm P_{cc}$ and O/F

reac	oxid N2O fuel C32H	wtfrac 66(a)	=1 wtfra	t(k)= c=1	=298.15 t(k)=	298.15
prob	case=Mule	SimDatal	hp	p (ba	ir)=30	o/f=9
output	siunits	massf	shor	t		
end						

CEA Combustion Properties:

 $\left[T_{CEA}, \rho_{cc}, c_{p,cc}, k_{cc}\right] = CEA(P_{cc}, O/F)$

Modeling – Nozzle

- Ideal nozzle with correction factor
 - Ideal gas with constant specific heats
 - No heat transfer
 - No shockwaves
 - Isentropic expansion
- Exit properties and thrust calculated using exit Mach number, upstream properties

Exit Velocity:

$$v_{exit} = M_{exit} \sqrt{kRT_{exit}}$$

Nozzle Thrust:

```
F = \zeta_{C_F}(\dot{m}_{cc}v_e + (P_e - P_{atm})A_e)
```


Modeling – Mass Estimation

- Rocket structural mass estimated from rocket outer diameter and propellant mass
- Experimentally fitted to twelve similarly sized hybrid rockets [16-27]
- Difficult to estimate accurately since heavily dependent on detailed design

Structural Mass Estimation:

$$m_{structural} = a_1 m_{propellant} + a_2 OD + a_3$$

Liftoff Mass:

 $m_{liftoff} = m_{structural} + m_{propellant} + m_{payload}$

Modeling – Trajectory Analysis

- Used MATLAB function (Suborbit) developed by UVR member
 - Single degree of freedom trajectory analysis
 - Input is thrust and mass curves, output is altitude, velocity, and acceleration curves
 - Validated against 27 solid rocket motors (mean error 5.7%) [28]
- Use average drag coefficient values
- Corrects thrust for pressure term (varies with altitude)

Aerodynamic Drag:

$$F_D = C_D A \frac{\rho v^2}{2}$$

Vertical Acceleration:

$$a = \frac{F_T - F_D}{m} - g$$

Vertical Velocity:

$$v = \int a dt$$

Altitude:

$$v = \int v dt + y_{launch}$$

Model Validation

- Only hybrid motor model validated, since "Suborbit" already validated
- Compared various parameters from test results in literature to model output
 - Tank pressure, chamber pressure, motor thrust
 - Only paraffin-N₂O with self-pressurized tanks
- Three rockets examined
 - Boundless University of Washington [16]
 - Phoenix 1A University of KwaZulu-Natal [17]
 - Deliverance II University of Toronto [18]

$$e_F = \frac{MAE}{\mu} = \frac{\sum \left|F_i - F_{model,i}\right|}{\sum F_i}$$

Model Validation – Results

Model Error	Deliverance II	Boundless	Phoenix 1A
Tank Pressure	1.55 %	15.0 %	-
Combustion Chamber Pressure	10.7 %	25.7 %	12.3 %
Thrust	7.55%	32.8 %	12.2 %

Model Validation – Results

Model Error	Deliverance II	Boundless	Phoenix 1A
Tank Pressure	1.55 %	15.0 %	-
Combustion Chamber Pressure	10.7 %	25.7 %	12.3 %
Thrust	7.55 %	32.8 %	12.2 %

Significant sources of error:

- Uncertainties in input, particularly coefficient of discharge, initial oxidizer mass
- Tank model unable to capture initial transient in tank pressure
- Phoenix 1A tank supercharged with helium
- Did not adjust for different combustion and nozzle efficiencies

Modeling – Limitations

- Does not capture transient effects
 - Initial tank pressure decrease
 - Combustion instability
- No heat transfer
- No axial and radial variation in properties
- Does not analyze non-chemical sources of combustion efficiency
 - Pre/post combustion chambers
 - Injector atomization profile
 - Effects of additives

Design Optimization

- Validated model used to maximize specific impulse
- Built-in MATLAB functions used:
 - "fmincon" interior point (default), trust region reflective, SQP, active set
 - "simulannealbnd" simulated annealing
 - "ga" genetic algorithm
 - "patternsearch" pattern search
- Function not defined over entire design space
- Parameter scaling to improve algorithm performance
- Constraints handled internally
 - Reduce model evaluations

Specific Impulse:

Design Optimization – Design Variables

Parameter	Description	Lower Bound	Upper Bound
Oxidizer Tank Volume	Controls altitude	4 L	14 L
Tank Pressure	Controls oxidizer mass flow	4 MPa	6 MPa
Effective Injector Area	Controls thrust, OF ratio, chamber pressure	10 mm ²	40 mm ²
Fuel Grain Length	Controls OF ratio	0.2 m	0.6 m
Fuel Grain Initial Diameter	Controls mass flux	30 mm	80 mm
Nozzle Throat Diameter	Controls thrust, chamber pressure	20 mm	40 mm
Nozzle Area Ratio	Optimizes thrust	3	10

Design Optimization – Constraints

- Chamber Pressure
 - Avoid combustion instability and backflow failure mode [30]
- Fuel grain port mass flux
 - High mass flux associated with combustion instability [31]
- Outer diameter
 - Use current fuselage mold to reduce costs
- Off-the-rail-velocity
 - Required for aerodynamic stability [32]
- Acceleration
 - Reduces loads
- Altitude
 - Rocket must be close to 10000ft AGL [32]

 $P_{cc} < 0.8(P_{tank} - P_{feed})$

$$G < 500 \frac{kg}{m^2 s}$$

 $d_{port,f} + 0.05m < 0.14m$

 $v_{off-the-rail} > 30m/s$

$$a_{max} < 100 \frac{m}{s^2}$$

 $abs(alt_{max}-3050m)<100m$

Design Optimization – Results

- Genetic algorithm function yielded best results
- Used default function settings

Design Parameter	Value
Oxidizer Tank Volume	10 L
Tank Pressure	6 MPa
Effective Injector Area	17.5 mm ²
Fuel Grain Length	23.9 cm
Fuel Grain Initial Diameter	5.63 cm
Nozzle Throat Diameter	2.16 cm
Nozzle Area Ratio	7.04

Performance Parameter	Value
Specific Impulse	206 s
Maximum Altitude	3143m
Off-the-rail Velocity	30.3 m/s
Maximum Thrust	2606 N
Burn Time (Liquid)	4.81 s
Liftoff Mass	35.1 kg
Total Impulse	10600 Ns

Design Optimization – Results

Sensitivity Analysis

- Global methods preferred
 - High Coupling between parameters
- Elementary effects method selected [33]
 - Requires few model evaluations
 - Global one-at-a-time approach
 - Normally used as screening method
- Compared input effects on:
 - Altitude (most important)
 - Specific impulse (secondary goal)

Elementary Effect:

$$EE_i^j(\mathbf{x}^{(l)}) = \frac{\left[y(\mathbf{x}^{(l+1)}) - y(\mathbf{x}^{(l)})\right]}{\Delta}$$

Sensitivity Measure:

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r |EE_i^j|$$

Uncertainty Quantification

Parameter	Mean	Deviation	Distribution	Notes
Tank Volume	10 L	0.02	Normal	Machining tolerances
Tank Fill Level	60 %	0.1	Normal	Difficult to measure directly
Initial Oxidizer Tank Pressure	6 MPa	0.05	Uniform	
Effective Injector Area	17.5 mm ²	0.05	Uniform	
Fuel Grain Length	0.239 m	0.01	Normal	
Fuel Grain Initial Diameter	56.3 mm	0.025	Normal	
Nozzle Throat Diameter	21.6 mm	0.075	Normal	Large due to throat regression [34]
Nozzle Area Ratio	7.04	0.14	Normal	Large due to throat regression
Feed system pressure drop	0.1 MPa	0.5	Uniform	Highly dependent on detailed design
Density of Fuel	930 kg/m³	0.032	Uniform	
Regression Rate Constant	0.155	0.1	Uniform	Standard for paraffin-N ₂ 0 [35]
Regression Rate Exponent	0.5	0.01	Uniform	Standard for paraffin-N ₂ 0
Altitude	1400 m	0.007	Normal	Altitude of Spaceport America (SA)
Ambient Pressure	0.867 MPa	0.1	Normal	Atmospheric pressure at SA
Ambient Temperature	301 K	0.02	Normal	Average temperature at SA
Discharge Correction Factor	1.05	0.05	Uniform	Values suggested in Sutton [36]
Characteristic Velocity Correction Factor	0.8	0.1	Uniform	Values suggested in Sutton
Thrust Coefficient Correction Factor	0.9	0.05	Uniform	Values suggested in Sutton
Drag Coefficient Variability	1	0.1	Uniform	

- 19 uncertain parameters
- Uncertainty based on expected values at launch day

Sensitivity Analysis – Altitude

Lessons Learned

- Accurate hybrid rocket modeling is difficult
 - Hybrid rocket physics not well understood
 - Large errors and uncertainties in measurement and input
 - Empirical testing still dominates
- Record as much as possible
 - Compile similar relevant facts in one place
 - Write report section as soon as task completed
- Understanding algorithms is crucial to using them
 - Problem was initially poorly set up for MATLAB functions
- Your solution is only as good as your problem definition

ĥ	~ 🖶 🏲 🛛 100%		23 - Ca	alibri 👻	11 👻	в <i>I</i>	÷ /
ĴХ	- A	в	С	D	E	F	G
1		General					
2				Ox-Fuel	Predicted	Apogee	Actua
3	Rocket Name	Organization	Year	-	m	ft	m
4	Atlantis II	University of Calgary	2018	N2O-Paraffin	9199	30180	C
5	Atlantis I	University of Calgary	2017	N2O-Paraffin	9144	30000	C
6	Hyperion	UCLA	2018	N2O-Paraffin/H	2621	8600	1837
7	Prometheus	Polytechnique Montreal	2018	N2O-Paraffin	2996	9830	C
8	Deliverance II	University of Toronto	2017	N2O-Paraffin	7096	23281	7560
9	HyPE 1B	UCLA	2011	N2O-Al-Paraffi	7620	25000	C
10	Boundless	University of Washington	2018	N2O-Paraffin	8169	26800	1453
11	Phase 1	Stanford University	2003	N2O-Paraffin	-	-	1768
12	Phase 2	Stanford University	2003	N2O-Paraffin	26822	88000	-
13	Phoenix 1A	University of KwaZulu-Na	2017	N2O-Paraffin	10000	32808	2500
14	3" Diameter	Stanford University	2005	N2O-Al-Paraffi	-	-	2865
15	Vidar III	University of Waterloo	2017	N2O-HTPB	1734	5689	C
16	Unexploded Ordinance	University of Waterloo	2018	N2O-HTPB	3804	12480	4088
17	Defiance (CDR)	University of Toronto	2018	N2O-Paraffin	15000	49213	-
18	Mars Ascent Vehicle	Stanford University	2010	N2O-Paraffin	-	-	-
19	HEROS 3	Stuttgart University	2016	N2O-Paraffin			32300
20	Statos II/II+	TUDelft	2016	N2O-Sorbitol			21457
21	N/A	Stanford University	2013	N2O			
22	H-70, K-240, M-900	RATTWorks	2011	N2O-polyprop	/lene		
23	HyCOMET	UAS Augsburg	2016	N2O-PE			
24	N/A	CIRA	2015	N2O-Paraffin			
25	Peregrine	Stanford University	2014	N2O-Paraffin			
26	4L-04	Stanford University	2007	GOX-Paraffin		-	-
27	4L-05	Stanford University	2007	GOX-Paraffin	-	-	-
28	4L-08	Stanford University	2007	GOX-Paraffin	-	-	-
29	4P-01	Stanford University	2007	GOX-Paratfin	-	-	-
30	N/A	TUDelft	2016	N2O-PMME			
31	N/A	Tomsk University	2016				
32							

Future Work

- More powerful sensitivity analysis tools
 - Variance-based sensitivity
- Testing of scale motor
 - Validation of model with more detailed data
 - Determination of realistic correction coefficients
- Develop higher fidelity models
 - CFD of injector and propellant tank
 - Combustion stability analysis
- Detailed design
 - Specify rocket architecture
 - Fill and feed system, combustion chamber, tank, etc.
- Uncertainty-based design optimization

References

- [1] MARS Scientific (2019). SpaceShipTwo Powered Flight. [image] Available at: http://marsscientific.com/images/gallery/MARS-Scientific-SS2-PF02-Second-Powered-Flight-5-Sep-2013.jpg [Accessed 17 Apr. 2019].
- [2] M. Karabeyoglu, B. Cantwell, and D. Altman, "Development and testing of paraffin-based hybrid rocket fuels," in *37th Joint Propulsion Conference and Exhibit*, 2001, p. 4503.
- [3] M. A. Karabeyoglu, B. J. Cantwell, and G. Zilliac, "Development of scalable space-time averaged regression rate expressions for hybrid rockets," *Journal of Propulsion and Power*, vol. 23, no. 4, pp. 737–747, 2007.
- [4] J. E. Zimmerman, B. S. Waxman, B. Cantwell, and G. Zilliac, "Review and evaluation of models for selfpressurizing propellant tank dynamics," in *49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference*, 2013, p. 4045.
- [5] J. Dyer, G. Zilliac, A. Sadhwani, A. Karabeyoglu, and B. Cantwell, "Modeling feed system flow physics for self-pressurizing propellants," in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007, p. 5702.
- [6] B. Geneviève, "Development of a hybrid sounding rocket motor," MScEng thesis, Discipline of Mechanical Engineering, University of KwaZulu-Natal, South Africa, 2013
- [7] M. M. Fernandez, "Propellant tank pressurization modeling for a hybrid rocket," 2009.

- [9] M. Balesdent, L. Brevault, N. B. Price, S. Defoort, R. Le Riche, N.-H. Kim, R. T. Haftka, and N. Bérend, "Advanced space vehicle design taking into account multidisciplinary couplings and mixed epistemic/aleatory uncertainties," in *Space Engineering*. Springer, 2016, pp. 1–48
- [10] M. Kanazaki, A. Ariyairt, K. Chiba, K. Kitagawa, and T. Shimada, "Conceptual design of single-stage rocket using hybrid rocket by means of genetic algorithm," *Procedia Engineering*, vol. 99, pp. 198–207, 2015.
- [11] M. B. Ozbilgin, H. Telli, and O. Ozkan, "Hybrid rocket engine design with multi-objective vibrational genetic algorithm," in *Recent Advances in Space Technologies (RAST), 2017 8th International Conference on*. IEEE, 2017, pp. 61–66.
- [12] H. Zhu, H. Tian, G. Cai, and W. Bao, "Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight," *Chinese Journal of Aeronautics*, vol. 28, no. 3, pp. 676–686, 2015
- [13] R. Span and W. Wagner, "Equations of state for technical applications. i. simultaneously optimized functional forms for nonpolar and polar fluids," *International journal of thermophysics*, vol. 24, no. 1, pp. 1– 39, 2003
- [14] S. Gordon and B. J. McBride, "Computer program for calculation of complex chemical equilibrium compositions and applications. part 1: Analysis," 1994.

- [15] Gilmour Space Launch Services (2018). Gilmour Space prepares for suborbital hybrid rocket launch with 75 kN (16,900 lbs) test-fire. [image] Available: https://www.gspacetech.com/singlepost/2018/05/29/Gilmour-Space-75-kN-test-fire [Accessed 17 Apr. 2019].
- [16] K. Dundas, A. Goldfogel, C. J. Grant, et al., "Boundless 2018 team 09 project technical report to the 2018 Spaceport America Cup," 2018.
- [17] B. Genevieve, J. Pitot de la Beaujardiere, and M. Brooks, "A computational tool for predicting hybrid rocket motor performance," R&D Journal, vol. 33, pp. 56–65, 2017.
- [18] B. Leong, Z. Sun, A. Marquis, et al., "Deliverance II team 91 project technical report for the 2017 IREC," 2017
- [19] A. Thomas, C. Duffin, G. Doerksen, C. Hill, D. Stannard, L. Vollmerhaus, J. Martens, A. Deshpande, and N. Meulenbroek, "Student organization for aerospace research Atlantis I sounding rocket," 2017.
- [20] J. Martens, X. Cui, H. Stoldt, L. Alacoque, T. Messinger, A. Hamilton, K. van der Mueulen, and A. Deshpande, "Student organization for aerospace research Atlantis II sounding rocket," 2018.
- [21] 0. Jobin, "Team 59 project technical report for the 2018 IREC," 2018.
- [22] M. A. Karabeyoglu, G. Zilliac, P. Castellucci, P. Urbanczyk, J. Stevens, G. Inalhan, and B. J. Cantwell, "Development of high-burning-rate hybrid-rocket-fuel flight demonstrators," *Powered Flight-The Next Century*, 2003.

- [23] K. U. Zimmerman, B. C. Kentosh, P. C. Chang, M. J. Booth, R. E. Abrantes, P. H. N. Tran, C. P. McGrath, B. A. Dizon, A. M. Shalabi, W. A. Silva, and M. J. Marshall, "The development of a paraffin based experimental hybrid sounding rocket," 2011.
- [24] N. Christopher, T. Cojocar, J. Deery, M. Daly, C. Farrow, D. Jiang, S. Kong, H. Li, R. Liu, E. Ma, M. Marczak, A. Mihaila, A. Morrison, D. Ng, A. Paul, V. Rajkumar, , and E. Yang, "Unexploded ordnance hybrid rocket," 2018.
- [25] C. Lessard-Clouston, A. Peterson, A. Lima, A. Smolyanov, S. Stinson, S. Shaolian, N. Stacy, J. Feldkamp, O. Wesel, H. Martinez, and C. Matro, "Project prometheus at ucla," 2018.
- [26] J. Deery, N. Christopher, M. Daly, and H. Li, "Vidar III hybrid rocket," 2017.
- [27] A. Marquis, G. Jovanovic, M. Passarelli, E. V. Nino, M. Khalil, F. Chang, A. Razavi, G. Lu, S. Looper, M. Kim, A. Gulab, and M. Razavi, "Rocketry critical design review," 2018
- [28] M. Pearson, "Initial sizing of a low cost sub-orbital space rocket," 2016.
- [29] The Mathworks (2019). *Function with several local minima*. [image] Available at: https://www.mathworks.com/products/global-optimization.html [Accessed 18 Apr. 2019].
- [30] B. S. Waxman, "An investigation of injectors for use with high vapor pressure propellants with applications to hybrid rockets," Ph.D. dissertation, Stanford University, 2014.
- [31] A. Fraters and A. Cervone, "Experimental characterization of combustion instabilities in high-mass-flux hybrid rocket engines," *Journal of Propulsion and Power*, vol. 32, no. 1, pp. 958–966, 2016.

- [32] Experimental Sounding Rocket Association and New Mexico Spaceport Authority, "Spaceport America Cup Intercollegiate Rocket Engineering Competition Design, Test, and Evaluation Guide," 2017.
- [33] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global sensitivity analysis: the primer. John Wiley & Sons, 2008
- [34] R. Votta, M. Di Clemente, and G. Ranuzzi, "Preliminary design of a 30kN paraffin-based hybrid rocket engine," in 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2005, p. 4046
- [35] A. McCormick, E. Hultgren, M. Lichtman, J. Smith, R. Sneed, and S. Azimi, "Design, optimization, and launch of a 3" diameter n2o/aluminized paraffin rocket," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005, p. 4095
- [36] G. Sutton and O. Biblarz, Rocket Propulsion Elements, ser. A Wiley Interscience publication. Wiley, 2001. [Online]. Available: https://books.google.ca/books?id=LQbD0xg3XZcC
- [37] G. Ranuzzi, D. Cardillo and M. Invigorito, "Numerical Investigation of a N2O-Paraffin Hybrid Rocket Engine Combusting Flowfield," in 6th European Conference for Aeronautics and Space Sciences, Krakow, 2015
- [38] http://watzlavick.com/robert/rocket/regenChamber/tests/index.html

